c. Ind. Soc. Ag. Statistics (2), 1991 : 158-162

Admissible Correlation Estimator of Heritability

Davendra Verma¹

and J.P. Jain

Indian Agricultural Statistics Research Institute, New Delhi (Received : January, 1989)

Summary

Admissible estimator of heritability based on intra-class correlation between half-sibs with minimum bias is proposed and illustrated numerically. *Key words*: Heritability; Half-sib analysis; Restricted estimator.

Introduction

Half-sib analysis is widely used in the estimation of heritability (h^2) in farm animals. The estimate in this case is obtained from the estimates of components of variance 'among sires' and 'within sires' in the following one way classification model

(1)

(2)

$$y_{ij} = \mu + s_i + e_{ij}$$

where y_{ij} is the observation on the progeny of the jth dam (j = 1, 2, ..., d) mated to the ith sire (i = 1, 2, ..., s), $s_i \sim N(0, \sigma_s^2)$, $e_{ij} \sim N(0, \sigma_w^2)$ and all effects are independent.

If A and B are the observed 'between sires' and 'within sires' components of mean square then an estimate of heritability is

$$h_{\rm H}^2 = \frac{4(A-B)}{A+(d-1)B}$$

with approximate sampling variance

¹ Medical Statistician, Directorate General of Health Services, Nirman Bhawan, New Delhi

ADMISSIBLE CORRELATION ESTIMATOR OF HERITABILITY

$$V(h_{\rm H}^2) = \frac{32 \left[1 + (d-1)t\right]^2 (1-t)^2}{d (d-1) (s-1)}$$

in which $t = h_{\rm H}^2/4$

This estimate can assume values outside its permissible limits of (0,1). The aim of this paper is to propose an admissible estimator of heritability based on Federer's [1] approach of obtaining non-negative estimates of variance components.

2. The Proposed Estimator

Federer's [1] non-negative variance component estimator of σ_s^2 can be modified suitably by applying exponential correction to both A and B to give an estimator of heritability which always gives values within the admissible range. The modified version of the estimator is

$$\hat{\sigma}_{s}^{2} = \frac{A\left(1 - e^{-\delta_{z} A/B}\right) - B(1 - e^{-\delta_{z} A/B})}{d}$$
(4)

$$\hat{\sigma}_{w}^{2} = B$$

where $\delta_1 = 0$ and $0 < \delta_2 \le 1$ when $A \le \left(1 + \frac{d}{3}\right) B$ (5)

$$0 < \delta_1 \le \delta_0$$
 and $\delta_2 = 0$ when $A > \left(1 + \frac{d}{3}\right) B$

in which

$$\delta_0 = -\frac{B}{A} \log_e \left[1 - \left(1 + \frac{d}{3}\right) \frac{B}{A} \right].$$

Hence using (4) the admissible estimator of heritability based on intra-class correlation between half-sibs becomes

$$h_{HA}^{2} = 4 \left[\frac{A \left(1 - e^{-\delta_{1} A/B} \right) - B(1 - e^{-\delta_{2} A/B})}{A \left(1 - e^{-\delta_{1} A/B} \right) - B(1 - e^{-\delta_{2} A/B}) + dB} \right]$$
(6)

where δ_1 and δ_2 are as defined in (5).

This is a biased estimator and the bias will be minimum when δ_1 or δ_2 as the case may be takes the maximum value in its range (Federer, [1]). Hence, admissible

159

(3)

estimate of heritability with minimum bias is obtained from (6) taking

$$\delta_1 = 0$$
 and $\delta_2 = 1$ when $A \le (1 + d/3) B$
 $\delta_1 = \delta_0$ and $\delta_2 = 0$ when $A > (1 + d/3) B$

The mean square error of h_{HA}^2 using the 'delta technique', i.e.

MSE
$$(h_{HA}^2) = \left(\frac{\delta h_{HA}^2}{\delta A}\right)^2 \sigma_A^2 + \left(\frac{\delta h_{HA}^2}{\delta B}\right)^2 \sigma_B^2$$

in which σ_A^2 and σ_B^2 are the variances of A and B and are to be replaced by their unbiased estimators $\frac{2 A^2}{(s+1)}$ and $\frac{2B^2}{[s (d-1)+2]}$ respectively (Kempthome, [2], p. 247) can be shown equal to

$$MSE (h_{HA}^{2}) = \frac{32(N+3) d^{2}A^{2}B^{2} (1-\delta_{2} e^{-\delta_{2}A'B})^{2}}{[A+B(e^{-\delta_{2}A'B}-1+d)]^{4} (N-s+2) (s+1)}$$

$$when \quad A \leq \left(1+\frac{d}{3}\right) B$$

$$= \frac{32(N+3) d^{2}A^{2}B^{2} [1-(1-\delta_{1} e^{-\delta_{1}A'B})]^{2}}{[A (1-e^{-\delta_{1}A'B})+(d-1) B]^{4} (N-s+2) (s+1)}$$

$$when \quad A > \left(1+\frac{d}{3}\right) B \qquad (8)$$

in which N=sd.

The estimator (6) is equally applicable to unbalanced data if we replace d by k where $\$

$$k = \frac{1}{s-1} \left[N - \frac{\sum n_i^2}{N} \right] \text{ and } N = \sum_i n_i$$

in which n, is the number of progeny from ith sire.

3. Numerical Illustration

Table 1 summarises the estimates of heritability for balanced as well as

160

unbalanced types of data obtained by using classical (h_H^2) and admissible estimator (h_{HA}^2) . The balanced data relates to first 100-day egg production of progeny from 8 sires in poultry (Table 2) while the unbalanced data consists of 100-day egg production from first 14 sires as used by Nigam *et al.* [3].

Estimator	Balanced data		Unbalanced data		
	Est.	MSE	Est.	MSE	
$h_{\rm H}^2$	-0.134	0.0065	-0.082	0.0074	
h ² HA	0.029	0.0063	0.057	0.0015	

Table 1. Estimates of heritability by two different methods alongwith their MSE's

Table 2. First 100-day egg production of progeny from 8 sires in poultry

Sire numbers										
1	.2	3	4	5	6 -	7	8			
80	85	92	74	68	82	76	71			
80	82	75	89	57	71	73	63			
68	67	53	52	81	64	68	62			
- 44	36	76	39	71	84	65	55			
64	87	76	71	71	80	71	78			
54	79	52	61	69	59	75	67			
48	78	47	51	64	76	57	67			
87	69	42	85	. 85	58	86	85			
83	60	79	76	83	58	49 ·	75			
79	57	72	75	70	60	86	70			
75	51	63	67	50	71	75	69			
68	62	47	64	50	74	61	63			
40 ·	80	89	60	70	75	- 68	67			
38	61	82	48	71	65	67	63			
32	80	88	76	.68	62	77	55			

The proposed estimator (h_{HA}^2) is seen not only to provide estimates within the admissible range but also gives estimates with comparatively low standard errors.

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

REFERENCES

- [1] Federer, W.T., 1968. Non-negative estimators for components of variance. Appl. Statist., 17, 171-174.
- [2] Kempthorne, O., 1977. An Introduction to Genetic Statistics. Iowa State Univ. Press, Ames. Iowa.
- [3] Nigam, A.K., Srivastava, V.K., Jain, J.P. and Gopalan, R., 1979. A note on estimation of heritability by regression analysis. *Biom. J.*, 21, 667-673.